

Nesta sessão prática iremos abordar os seguintes temas:

- 1. Simetria-frisos
- 2. webMathematica
- 3. Matemática sem palavras
- **4. Ο número** π
- 5. Tangram
- 6. Estereoscopia
- 7. KaleidoTile

Aceda ao site do Atractor (<u>http://www.atractor.pt</u>) e, na barra lateral esquerda, clique em Matemática. Aqui tem acesso a uma lista de temas de Matemática.

Clique em **"Apontadores para todos os applets no site do Atractor**" e teste alguns dos links.

De seguida, vamos ver mais detalhadamente alguns exemplos de temas que pode encontrar no site do Atractor e que podem ser usados com os seus alunos na sala de aula.

1. Simetria - frisos

Regresse agora à página dos temas de Matemática e clique em "Simetria" e depois em "Documentação"; acede à página

http://www.atractor.pt/simetria/matematica/docs/

A partir dos *links* "reflexões" e "frisos", pode aceder a exemplos dos quatro tipos de isometrias no plano:

- reflexão (<u>http://www.atractor.pt/simetria/matematica/docs/reflexoes2.htm</u>)

rotação (<u>http://www.atractor.pt/simetria/matematica/docs/frisos3.htm</u>)

translação (<u>http://www.atractor.pt/simetria/matematica/docs/frisos3.htm</u>)

 reflexão deslizante (<u>http://www.atractor.pt/simetria/matematica/docs/</u> <u>frisos2.htm</u>).

1.1. Consulte a página

http://www.atractor.pt/simetria/matematica/materiais .

Clique em **"Sobre frisos, para o Ensino Secundário**" e resolva todos os exercícios excepto o 4º (construção dos 7 tipos de frisos em papel, com recortes e dobragens).

Aveiro - 2007

2. webMathematica⁽¹⁾

Na barra lateral esquerda da página de entrada do *site* do Atractor, clique em webMathematica.

Nesta secção encontra um conjunto de páginas que usam o webMathematica, permitindo uma gama completamente nova de aplicações, visto que tem por trás o Mathematica, instalado no próprio servidor.

Seleccione "webMathematica no Atractor" e, de seguida, "adaptações". Aqui poderá ver alguns exemplos produzidos pela Wolfram e traduzidos para português.

Volte à página anterior e clique em "Materiais". Encontra aqui a lista dos materiais produzidos pelo Atractor com o webMathematica.

2.1. Clicando em "Compostas de uma função com algumas funções simples - relações entre os diversos gráficos", pode introduzir uma função F(x) qualquer, atribuir valores aos parâmetros a, b, c, k e ver os gráficos de F(|x|), |F(x)|, |F(|x|)|, F(x)+b, F(x-a)+b, F(x+a), kF(x), kF(cx), F(cx), F(a+x)-F(a), F(x+a)-(F(a)+F'(a)x), F(F(x)).

2.1.1. Escolha $F(x)=x^2$ e o centro {0,0}, seleccione as várias opções e veja as potencialidades deste programa.

2.1.2. Faça o mesmo para as funções Abs[x](=|x|).

2.1.3. Grave o gráfico obtido em 2.1.2.

2.2. Regresse ao menu "Materiais produzidos pelo Atractor (com o webMathematica)" e clique em "Múltiplas funções". Aqui pode ver o gráfico de várias funções em simultâneo. Em particular, poderá ver o gráfico de uma dada função e suas derivadas de várias ordens.

2.2.1. Escolha $F_1(x) = x^2$, $F_2(x) = F1[x] + x0$, $F_3(x) = F1[x-x0]$, $F_4(x) = x0*F1[x]$, $F_5(x) = F1[x0*x]$. Seleccione $F_1[x]$ e $F_2[x]$, seleccione a opção "applet" (ver imagem seguinte) e analise o comportamento de $F_2[x] = F1[x] + x0$, enquanto x0 toma diferentes valores entre -4 e 4.

⁽¹⁾ O webMathematica é uma tecnologia da Wolfram (empresa criadora do programa Mathematica) com grandes potencialidades. Em particular, é possível criar dinamicamente, no momento, *applets* interactivos (que depois podem ser guardados e usados localmente sem ligação à rede) referentes, por exemplo, ao comportamento de funções (ou outros dados) escolhidos pelo utilizador.

2.2.2. Compare agora as funções:

- **a)** $F_1[x] \in F_2[x];$
- **b)** $F_1[x] \in F_3[x];$
- **c)** $F_1[x], F_4[x] \in F_5[x];$

2.2.4. Clique na opção "applet" para anular a escolha feita anteriormente, seleccione um intervalo de semi-amplitude 6 e ponha $F_1(x)=x+2$, $F_2(x)=1/x$, $F_3(x)=x^2-1$, $F_4(x)=F_1[x]+F_2[x]$, $F_5(x)=F_2[x]*F_3[x]$, $F_6(x)=F_1[x]/F_3[x]$. Compare as funções F4 com F1 e F2, F5 com F2 e F3 e F6 com F1 e F3, no que diz respeito ao seu domínio e zeros.

2.3. Regresse ao menu "Materiais produzidos pelo Atractor (com o webMathematica)" e clique em "Zoom de uma função". Aqui pode ver o gráfico de uma dada função e o mesmo gráfico escolhendo diferentes "zooms".

2.3.1. Atribua os seguintes valores:

Compare o gráfico do zoom de ordem 100 da função no ponto de abcissa 1.1 com a recta que seria tangente ao gráfico da função Seno no ponto de abcissa 1.1. O facto de um zoom suficientemente elevado da função num ponto do gráfico aproximar uma recta tão bem quanto queiramos traduz precisamente a derivabilidade da

Associação Atractor

AveiroMat

Aveiro - 2007

função na abcissa do ponto.

2.3.2. Escolha $F(x) = x^* sin[1/x]^{(2)}$ e atribua os seguintes valores:

	Zoom do gráfico de uma função no ponto de abcissa 0			
Defina a função F (x) = ou escolha una já predefinida	x*sin(1)x] Sin(x)			
intervalo semi-anglitude = 33 definir dominio ; di fundo número de subintervalos 500 austingtota vertical di as	; centro = (<mark>0 1</mark>) branco relação atura larguna do gráfico singlota obliqua		gráficos tudos separados sobrepositos executar	1 2000 = 5 1 2000 = 5 1 2000 = 0.1 1 2000 = 501 1 2000 = 0.1 1 2000 = 500 1 escoher todas 1 apagar escohas

Clique em executar.

Seleccione zoom=5, obtém, assim, uma imagem ampliada do que se passa numa vizinhança do 0.

Seleccione agora zoom=500. Note que o gráfico não se aproximou de uma recta passando pela origem. Seria possível verificar que era isto que continuaria a suceder por maior que fosse a ordem do zoom. Atendendo à observação anterior, que pode concluir?

Clique em executar.

Seleccione zoom=0.5. Neste caso, obtemos o gráfico da mesma função num domínio mais alargado tendo, desta forma uma noção da periodicidade da função.

(2) Para saber o significado desta função clique no link instruções.

AveiroMat Aveiro - 2007

2.4. Regresse ao menu "Materiais produzidos pelo Atractor (com o webMathematica)" e clique em "O explorador de poliedros". Aqui pode visualizar os sólidos platónicos e efectuar transformações nestes sólidos, como por exemplo, estrelar, truncar, encolher, esburacar, etc.

2.4.1. Escolha a opção mono e seleccione a opção dodecaedro, tem assim um *applet* com um dodecaedro. Arraste este poliedro com o rato e observe que ele roda sobre si mesmo.

2.4.2. Pode gravar este *applet* e abri-lo posteriormente, mesmo sem acesso à net, seguindo estes passos:

* clique em "como guardar o applet";

* a partir da página entretanto aberta, importe para o seu computador, o ficheiro Atractor.zip;

* unzip este ficheiro;

* dentro da pasta "Atractor", crie uma pasta com um nome qualquer, por exemplo, poli

* dentro desta última pasta, crie outra pasta com um nome qualquer, por exemplo, dode

* dentro desta última pasta, crie um ficheiro vazio com um nome qualquer e terminação .txt, por exemplo dodecaedro.txt

* na página html com o *applet* que quer guardar, veja no *browser* a *source* da página (o código-fonte), seleccione o texto todo com o rato e copie-o (*copy*)

* abra a página .txt que criou, cole (*paste*) o que copiou nesta página e grave este ficheiro.

* feche este ficheiro e mude a sua terminação de .txt para .html

* se abrir este ficheiro com um browser, verá o mesmo *applet*.

2.4.3. Vamos criar um pequeno dodecaedro estrelado.

Para isso basta, na opção estrelar, escrever 100 e clicar no botão "estrelar". Grave o *applet* obtido.

Aveiro - 2007

2.4.4. É possível criar poliedros obtidos por truncatura de um cubo. Escolha a opção "cubo" e clique em truncar - deverá visualizar este poliedro:

a) Construa um cuboctaedro - trata-se de um sólido arquimedeano que pode ser obtido do cubo, truncando-o.

b) Faça o mesmo mas partindo do octaedro.

c) Construa um octaedro a partir da truncatura de um outro sólido platónico.

2.4.5. A bola de futebol clássica tem a estrutura de um sólido arquimedeano.

Este poliedro pode ser obtido por truncatura de um icosaedro.

Aveiro - 2007

a) Calcule a percentagem a usar para obter o referido poliedro e verifique no webMathematica se os seus cálculos estão correctos.

Consulte a página <u>http://www.atractor.pt/mat/Polied/poliedros.html</u> . Aqui encontra mais informação sobre os sólidos platónicos, em particular, exemplos de *applets* que ilustram a dualidade entre alguns destes sólidos.

Em <u>http://www.atractor.pt/soft/fr-soft.htm</u>, existe um zip com o conteúdo desta página.

Para obter planificações dos sólidos platónicos, aceda a: <u>http://www.atractor.pt/simetria/matematica/docs/ainda_reg2.html</u>

3. Matemática sem palavras

Seguem-se exemplos de "provas sem palavras" de alguns resultados matemáticos conhecidos:

3.1. Observando a imagem e conhecendo a área de um rectângulo, como deduzir a área de um triângulo?

Veja a resposta em <u>http://www.atractor.pt/mat/sem_palavras/area_trian.html</u>

Aveiro - 2007

3.2. Observando a imagem e usando um pouco de trigonometria, como deduzir a área de um paralelogramo?

Veja a resposta em http://www.atractor.pt/mat/sem_palavras/area_paralelogramo.html

3.3. Observando a imagem e acrescentando mais pontos, como deduzir que 1+2+...+n=n(n+1)/2 ?

Veja a resposta em

http://www.atractor.pt/mat/sem_palavras/soma_inteiros1.html

3.4. Porque é que $(a+b)^2 = a^2 + b^2 + 2ab$?

Veja a página <u>http://www.atractor.pt/mat/sem_palavras/caso_notavel_1.html</u>

3.5. Veja a imagem que se segue. Que relação numérica se deduz daqui?(Nota: está-se a considerar a>b).

Veja a página http://www.atractor.pt/mat/sem_palavras/caso_notavel_neg.html

3.6. A partir da imagem seguinte, como encontrar a solução positiva desta equação $x^2 + px = q$ (p>0, q>0)?

Este método para resolver equações foi descoberto por um matemático árabe do século VIII - Al-Khwarizmi. Veja a página <u>http://www.atractor.pt/mat/sem_palavras/eq_x2_px_q.html</u>

4. O número π

A sua data de nascimento está no π ?

É possível verificar se uma determinada sequência de algarismos se encontra nas primeiras 2 147 483 000 casas decimais do número π . Por exemplo, se nasceu a 10 de Setembro de 1975, poderá procurar a sequência 10091975. Para tal,

aceda à página http://www.atractor.pt/fromPI/PIsearch.html

Pode experimentar outros números - o seu número de BI, o seu número de telefone, etc.

4.1. Produza um postal com o número que escolheu na dízima do π .

4.2. Se representar π na base 27, usando letras do alfabeto, a "dízima" do π é representada apenas por letras. Desta forma, os números aparecem representados como "frases".

4.2.1. Procure em <u>http://www.atractor.pt/fromPI/PIalphasearch.html</u> o seu primeiro nome nos primeiros 148 000 000 "algarismos-letras" na "dízima" do π e, se o encontrou, produza outro postal. Teste vários nomes, uns pequenos e outros maiores.

Obs.1 - Deve ter notado que aqui encontra as palavras menos vezes que com os números da alínea acima. Porque será?

Obs.2 - Se testarmos palavras compridas, por exemplo, "aproximadamente", é pouco provável que as encontremos naqueles primeiros 148 000 000 "algarismosletras" da "dízima" do π . Mas será que existem no desenvolvimento total do π ? E começos de frases como "As ", "As armas", "As armas e ", "As armas e os"? E, se estão todas no desenvolvimento de π , com que frequência aparecem?

a) Veja no programa qual o número de ocorrências das palavras "ANA" e "SONIA". Qual dos dois nomes ocorre mais vezes? Compare agora o número de ocorrências de "SONIA" e "ANDRE".

b) Veja no programa quantas vezes aparece "SON".

c) Nestes casos, algumas das sequências continuarão com um "I", outras com um dos outros 26 algarismos-letras, etc. Quantas possibilidades diferentes há para completar as duas posições imediatamente a seguir a "SON"?

d) Divida o número de vezes que encontrou para "SON" pelo número de vezes que encontrou para "SONIA" e compare o quociente com a sua resposta à pergunta anterior.

Obs.3 - Na distribuição das letras no desenvolvimento de π , a comparação da frequência das diversas sequências finitas de inteiros com o mesmo comprimento faz sentido. A questão geral subjacente a esta comparação e às perguntas feitas é aliás uma questão em aberto. Saber se π é normal é saber se, para qualquer base (por exemplo 27), qualquer sequência finita de dígitos nessa base (por exemplo Manuel), e qualquer desenvolvimento de comprimento finito arbitrário do π , a frequência média com que aparece essa sequência nesse desenvolvimento finito tende (quando o comprimento do desenvolvimento tende para infinito) para um número que só depende do comprimento da sequência, e não da própria sequência em si. Ainda não se sabe se π é ou não normal.

4.3. No site do Atractor encontra π com mais de dois mil milhões de decimais. É difícil ter uma ideia sobre a precisão que tal representa em termos práticos. Vejamos alguns cálculos para ajudar a dar uma ideia sobre os grandes números e sobre o que representam, em termos práticos, as precisões dos diversos desenvolvimentos de π . Antes disso, recordemos que, conhecido «exactamente» o valor de r, o perímetro de uma circunferência de raio r é exactamente:

$p = 2\pi r.$

Se usarmos, em vez de π , uma aproximação de π com um erro (positivo) de ε , encontraremos para aproximação do perímetro 2 x (π + ε) x r = p + 2 ε r.

Cometemos, pois, no cálculo do perímetro, um erro de 2 ϵ r.

Em particular, tomando o desenvolvimento de π até às primeiras duas decimais de π (3,14), o erro desta aproximação de π é inferior a 10⁻² =0,01. Portanto o erro no cálculo de um perímetro de raio r será inferior a 2x0.01 r.

a) Sem tentar fazer nenhumas contas, mesmo mentalmente, escreva (rapidamente) num papel o número de decimais de π que pensa que seria necessário conhecer para, no cálculo do perímetro do equador terrestre, supondo que ele é uma circunferência de raio conhecido exactamente, não cometer um erro superior ao comprimento do raio de um electrão. Imagina que o desenvolvimeto dado no site do Atractor é suficiente?

b) E quantas seriam precisas se, na pergunta anterior, substituíssemos «perímetro do equador terrestre» por «perímetro de um círculo máximo do universo conhecido»?

c) Faça agora as contas para a pergunta da alínea a), supondo que o raio de de um electrão é 2,8 10⁻¹³ cm e o da Terra é 6378 km.

d) Faça as contas para a pergunta da alínea b), supondo que o raio do universo conhecido é 20 mil milhões de anos-luz (isto equivale aproximadamente a 1.89×10^{23} km)

AveiroMat Aveiro - 2007

Os resultados encontrados devem ter sido esclarecedores sobre a questão levantada no início de 4.3.

5. Tangram

Na página <u>http://www.atractor.pt/mat/tangram</u> pode aceder a um *applet* que permite jogar o conhecido puzzle do tangram.

5.1. Construa um quadrado com todas as peças disponíveis.

5.2. Se duas figuras planas se puderem construir com as mesmas peças, sem sobreposições, têm a mesma área. Tendo isto em mente, surgem, por vezes, alguns pseudo-paradoxos associados ao tangram. Considerem-se as figuras abaixo:

As imagens estão na mesma escala e ambas se podem construir com o tangram. No entanto, numa visão menos atenta, a segunda aparenta ter maior área que a primeira. De onde "nasceram" os pés da segunda pessoa?...

6. Estereoscopia

A partir da página de entrada do site do Atractor

http://www.atractor.pt

clique em Estereoscopia e veja alguns exemplos da *applets*, imagens e animações. Para tal, use os *kits* fornecidos.

7. KaleidoTile

Foi completada esta semana a tradução para português de um programa relacionado com simetria. Para importar esse programa ir ao site do Atractor e, no lado esquerdo, clicar em software. Aí encontra um link para o kaleidotile.

Com este programa pode, por exemplo, "colar" imagens nas faces dos poliedros.